携手共进
创造美好未来

对数公式(对数公式大全表格)

对数公式(对数公式大全表格)

对数运算10个公式如下:

1、lnx+lny=lnxy。

2、lnx-lny=ln(x/y)。

3、Inxn=nlnx。

4、In(n√x)=lnx/n。

5、lne=1。

6、In1=0。

7、Iog(A*B*C)=logA+logB+logC;logA'n=nlogA。

8、logaY =logbY/logbA。

9、log(a)(MN)=log(a)(M)+log(a)(N)。

10、Iog(A)M=log(b)M/log(b)A(b>0)。

对数函数的运算公式

当a>0且a≠1时,M>0,N>0,那么:

(1)log(a)(MN)=log(a)(M)+log(a)(N)。

(2)log(a)(M/N)=log(a)(M)-log(a)(N)。

(3)log(a)(M^n)=nlog(a)(M)(n∈R)。

(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)。

(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)。

(6)a^(log(b)n)=n^(log(b)a)。

(7)对数恒等式:a^log(a)N=N。

对数函数公式是什么?

对数函数

公式是y=logax(a>0,且a≠1)。

一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。

对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

相关信息:

对数可以简化乘法运算为加法,除法为减法,幂运算为乘法,根运算为除法。所以,在发明电子计算机之前,对数对进行冗长的数值运算是很有用的,它们广泛的用于天文、工程、航海和测绘等领域中。它们有重要的数学性质而在今天仍在广泛使用中。

对数运算的公式是什么?

对数运算10个公式如下:

1、lnx+lny=lnxy。

2、lnx-lny=ln(x/y)。

3、Inxn=nlnx。

4、In(n√x)=lnx/n。

5、lne=1。

6、In1=0。

7、Iog(A*B*C)=logA+logB+logC;logA'n=nlogA。

8、logaY =logbY/logbA。

9、log(a)(MN)=log(a)(M)+log(a)(N)。

10、Iog(A)M=log(b)M/log(b)A(b>0)。

对数函数的运算公式

当a>0且a≠1时,M>0,N>0,那么:

(1)log(a)(MN)=log(a)(M)+log(a)(N)。

(2)log(a)(M/N)=log(a)(M)-log(a)(N)。

(3)log(a)(M^n)=nlog(a)(M)(n∈R)。

(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)。

(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)。

(6)a^(log(b)n)=n^(log(b)a)。

(7)对数恒等式:a^log(a)N=N。

对数的公式是什么?

对数的运算公式:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

指数的运算公式:

1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】

2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】

3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】 

4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】

扩展资料:

对数的发展历史:

将对数加以改造使之广泛流传的是纳皮尔的朋友布里格斯(H.Briggs,1561—1631),他通过研究《奇妙的对数定律说明书》,感到其中的对数用起来很不方便,于是与纳皮尔商定,使1的对数为0,10的对数为1,这样就得到了以10为底的常用对数。

由于所用的数系是十进制,因此它在数值上计算具有优越性。1624年,布里格斯出版了《对数算术》,公布了以10为底包含1~20000及90000~100000的14位常用对数表。

根据对数运算原理,人们还发明了对数计算尺。300多年来,对数计算尺一直是科学工作者,特别是工程技术人员必备的计算工具,直到20世纪70年代才让位给电子计算器。但是,对数的思想方法却仍然具有生命力。

从对数的发明过程可以看到,社会生产、科学技术的需要是数学发展的主要动力。建立对数与指数之间的联系的过程表明,使用较好的符号体系对于数学的发展是至关重要的。实际上,好的数学符号能够大大地节省人的思维负担。数学家们对数学符号体系的发展与完善作出了长期而艰苦的努力

版权声明:本站文章图片来自互联网及其他公众平台,版权归原作者,如有侵权联系707225630@qq.com我们删除!
文章链接:http://www.rujiaoqi1.com/343963.html